Nutritional Considerations of Cardiovascular Disease

Presented by
Dr. Ron Grabowski
Cardiovascular Risk Factors

- Total Cholesterol (elevated)
- LDL (elevated)
- HDL (decreased)
- Triglycerides (elevated)
- Homocysteine (elevated)
- C - Reactive Protein (elevated)
- Lipoprotein (a) (elevated)
- Hypertension
Vitamin D

Recent evidence suggests that low 25(OH)D concentrations are associated with higher rates of:

- Hypertension
- Myocardial Infarction
- Cardiovascular Disease
- Peripheral Artery Disease

Hypertension 2007
Arch Intern Med 2008
Circulation 2008
Etiologies of Vitamin D Deficiency

- Fat malabsorption
- Gastric bypass surgery
- Medications
 - Antiseizure
 - Glucocorticoids
- Obesity
- Lactose Intolerance
Aging is associated with decreased concentrations of 7-dehydrocholesterol, the precursor of vitamin D₃ in the skin.

A 70 yr old individual has ~ 25% of the dehydrocholesterol that a young adult does and thus has a 75% reduced capacity to make vitamin D₃. Lancet – 1989

Winter increases in cardiovascular mortality, by 30-40% compared with summer, have been confirmed in numerous studies. EJCN - 1995
Hypertension and Vitamin D

Hypertensive individuals who were exposed to a tanning bed raised their blood concentrations of 25(OH)D by >180% in 3 months and become normotensive.

Lancet – 1998
Peripheral Artery Disease

- Black males have been consistently reported to be more likely to have PAD than are white adults.

- Factors that may account for this racial disparity;
 - Greater cutaneous melanin content, which blocks the initial conversion of 7-dihydrocholesterol to previtamin D3 in the skin.
 - Dietary intake that includes a lower consumption of dairy products.
 - Racial differences in vitamin D metabolism.

AJCN-2004, J Nutr—2005
Vitamin D Mechanisms and Cardiovascular Disease

Regulates the expression of a number of proteins relevant to the arterial wall, including vascular endothelial growth factor, matrix metalloproteinase type 9, myosin, elastin, and type I collagen.

Arterioscler Thromb Vasc Biol 2005

Regulates the renin-angiotensin system by suppressing renin gene expression and to inhibit cytokine release from lymphocytes.

J Clin Invest 2002

Vitamin D Receptor activators can protect against vascular calcification.

Vitamin D and Magnesium

Vitamin D may increase the gastrointestinal absorption of magnesium (Mg) and increase the transport of Mg from extracellular to intracellular space.

AJCN
Homocysteine and Cardiovascular Disease

Approximately 100 epidemiologic and clinical studies that included >10,000 case subjects and an equal number of control subjects have shown that elevated plasma total homocysteine (tHcy) is an independent risk factor for occlusive disease in the coronary, cerebrovascular, and peripheral vessels and for arterial and venous thrombosis.

Homocysteine

Results from a meta-analysis of 20 prospective studies indicated that, for every 5-µmol/L increase in homocysteine, the odds ratio for risk of ischemic heart disease was 1.32 (95% CI: 1.19, 1.45), and the odds ratio for risk of stroke was 1.59 (95% CI: 1.29, 1.96).

BMJ 2002
Homocysteine Mechanisms

Damages cells and tissues of arteries by inciting the release of cytokines, cyclins, and other mediators of inflammation and cell division.

Produces the connective tissue changes of arteriosclerotic plaques, causing fibrosis, calcification, proteoglycan deposition, and damage to elastin tissue layers.

Potent procoagulant that promotes the deposition of fibrin and thrombosis in artery walls.

Causes oxidation stress by effects on cellular respiration, leading to oxidation of LDL and other constituents of plaques.

Antagonizes the vasodilator properties of nitric oxide.

JAMA 1999, J Nutr 1996
Folic acid, Vitamin B12 & Pyridoxine

Homocysteine Regulation

- Serine
- THF
- Methionine
- S-adenosyl methionine (SAM)
- S-adenosyl homocysteine (SAH)
- Homocysteine
- Cystathionine
- Phosphatidylcholine, myelin, melatonin, catecholamines, DNA, and RNA

- Glycine
- PLP
- Methyl-THF
- FAD
- Formyl-THF
- Thymidine (DNA)
- Purines (RNA, DNA)

- Vitamin B-12

- PLP
Riboflavin and Homocysteine

Riboflavin has been largely ignored, despite the fact that FAD is a cofactor for methylenetetrahydrofolate reductase, which metabolizes folate to the form used in homocysteine methylation.

AJCN – 6/2003
Homocysteine and Smoking

Several studies showed that smoking is associated with elevated Homocysteine (tHcy) concentrations and that there is a strong dose-response relation between the number of cigarettes smoked and tHcy concentrations.

JAMA 1995, Am J Clin Nutr 2001,

Am J Epidemiol 2001

Eur J Vasc Surg 1993
Homocysteine and Coffee Consumption

Subjects who stopped drinking coffee had a decrease in tHcy concentration of 0.3 µmol/L, whereas much larger decreases in tHcy concentration of 1.1–1.5 µmol/L were detected in intervention studies.

Am J Clin Nutr 1997
Am J Epidemiol 2001
Magnesium

Calcium channel blocker

Enhances NO release from coronary endothelium.

Modulates lipid metabolism.

Stress depletes this nutrient

Caffeine depletes this nutrient

Diuretics deplete this nutrient (non potassium sparing).

Anti-platelet aggregation effect.

Low levels have been associated with Metabolic Syndrome.
Magnesium & Stress

Adrenalin

- Depletes heart and blood vessel magnesium.
- 72% of magnesium deprived animals developed large heart necroses after administering adrenalin.
L-Carnitine

Synthesis

- Tissues
 - Liver
 - Kidney
 - Brain

- Storage
 - Skeletal mm
 - Cardiac mm
L- Carnitine

Previous studies reported that 2 g of L-carnitine reduced plasma lipoprotein(a) without clinically relevant adverse events or negative impact on plasma glucose control.

Clin Ther 2003 & Atherosclerosis 2006

L-Carnitine may provide protective effects on cardiovascular disease by:

– Increasing HDL cholesterol
– Inhibiting the oxidation of LDL cholesterol
– Neutralizing the atherogenic effects of Ox-LDL cholesterol.

AJCN – 1/2009
Acetyl-L-Carnitine

– Ester of L – Carnitine

– Functions:
 • Antioxidant
 • Improve cardiolipin levels in the aged heart.
 • Maintains crucial membrane factors in cardiac mitochondria.

– Dosage: 500 mg/b.i.d.
Niacin (Nicotinic acid)

Mechanisms
- Decreases FFA mobilization
- Decreases LDL & TG by decreasing VLDL synthesis.
- Increases HDL by decreased catabolism
- Inhibitory effect on lipolysis

Adverse reactions
- Flushing
- Pruritus
- GI complaints
- Hepatotoxicity
- Hyperuricemia
- Impaired glucose tolerance
Coenzyme Q10

Levels have been found to be significantly lower in ischemic heart disease.

Concentrations of CoQ10 decline progressively in blood and myocardial tissue with increasing severity of heart disease.

In one study, CoQ10 levels were low in ~ 75% of patients undergoing cardiac surgery.
Cardiac Benefits of CoQ10

• Congestive Heart Failure
• Angina
• Arrhythmias
• Adriamycin Toxicity
• Mitral Valve Prolapse
• Hypertension
Drug – Nutrient Interactions

Statins
- Coenzyme Q10
 - Myalgia

Bile acid Sequestrants
- Questran
 - Vitamin A, B12, D, E, K, Beta-carotene, Folic acid and Iron
DASH Trial

Dietary Approaches to Stop Hypertension
DASH Diet
(Dietary Approaches to Stop Hypertension)

High
- Fruits, vegetables, nuts, whole grains, fish, poultry, and low-fat dairy products.

Low
- Red meat, sugar, fat and cholesterol.

DASH Diet - lowers blood pressure more than sodium restriction alone.
New Sodium Guideline

Less than 1500 mg/day
 – ~ 2/3 tsp of salt

Previous recommendation
 – Less than 2400 mg/day
 – 1 tsp/day

Potassium recommendation
 – 4,700 mg/day (offset sodium)

National Academies of Science, 2/11/04
Potassium

Research states that the ratio of Na:K may be more important in causing HTN than the level of sodium alone.

High Potassium Containing Foods

- Spinach, dark leafy vegetables, cantaloupes, bananas, oranges, tomatoes, almonds, winter squash, potatoes, and beans. Some dairy products.
Coenzyme Q10 (CoQ10) Deficiency

- Cardiovascular disease
- Diabetes
- Cancer
- Muscular diseases
PROPERTIES

CoQ is a powerful antioxidant

Bioenergetic agent and enhances the availability of adenosine triphosphatase (ATP) in the cells.
Coenzyme Q10

Ubiquinone deficiency may be present in essential hypertension.

- 59 patients
 - 39% deficient
 - 6% controls

Effects both systolic and diastolic blood pressure.
L - Carnitine

Synergistic relationship with Coenzyme Q10.

Primary function is in the oxidation of long-chain fatty acids.

Shown to reduce blood pressure and attenuate the inflammatory process associated with arterial hypertension.

Might produce a partial inactivation of the renin-angiotensin system resulting in a reduction in the production and effects of angiotensin II.

Dosage: 2 g/d for adults and 100mg/kg/d for children
Free Radicals

Promote platelet aggregation.

Injure endothelium.

Promote monocyte-macrophage chemotaxis.

Enhance intravascular thrombosis

J Lab Clin Med - 1990
Ascorbic Acid

Subjects in the highest quintile of vitamin C intake (median intake of 756 mg/d) had a 24% lower risk of CHD than did those in the lowest quintile. AJCN- 12/2004

Some hypertensives tend to have a reduced dietary intake of ascorbic acid.

May reduce blood pressure in the borderline and normotensives (1000 mg/d).

Influences prostaglandin production, such as prostacyclin (PGI-2) which is a vasodilator.

May decrease norepinephrine release from nerve endings and adrenal medulla to produce a hypotensive effect.

May lower BP by altering leukotriene metabolism.
Vitamin C and Glutathione

Each 1-mol change in ascorbate is associated with a change of 0.5 mol in glutathione.

Vitamin C at daily dosages of 500mg has been shown to increase red cell glutathione by 50%.
Vitamin E

Inhibition of protein kinase C activity in a variety of cells. Protein kinase C is necessary for platelet activation process.

Blood - 1991

Chronic vitamin E administration (600mg/day) improves oxidative stress in patients with type 2 diabetes and that this effect seems to be associated with a decrease in plasma catecholamine concentrations and cardiac Sympathetic Nervous System (SNS) activity.

AJCN – 6/2001
Selenium

Has been shown to cause vascular smooth muscle relaxation.

Drugs - 1998
Magnesium and Hypertension

Low magnesium intake has been associated with elevated levels of:

- C-Reactive Protein
- E-selectin
 - Endothelial adhesion molecule.
 - Expressed exclusively by endothelial cells.

Thiamin

Up to 50% of elderly persons have been found to be deficient in thiamin. **AJCN - 1987**

Aging is associated with different alterations in thiamin metabolism, such as low intake and decreased capacity to activate the vitamin.

Many diuretics utilized to control blood pressure deplete the body of this nutrient.

– Thiazides

It has been reported that furosemide and digoxin inhibit thiamin uptake by cardiac cells.

Thiamin deficiency has been associated with cardiomyopathies.

Thiamin has been shown to improve left ventricular ejection fraction by 22%. **AJM - 1995**

Magnesium is required to produce the active form of thiamin (Thiamin pyrophosphate – TPP).
Omega-3 Fatty Acids

Evidence suggests that increased consumption of n–3 Fatty Acids from fish or fish-oil supplements, reduces the rates of cardiac disease and possibly stroke.

AJCN – 6/2006

Has been shown to blunt the vasopressor effects of angiotensin II and norepinephrine and may reduce BP and the risk of arrhythmia.

Stimulates the production of prostaglandin I₃, an antithrombotic and antiplatelet-aggregating agent similar to prostacyclin.

Vitamin E deficiency may develop with Omega – 3 fatty acid supplementation.
Uric Acid

Hyperuricemia (serum > 7 mg/dL) is an independent risk factor for cardiovascular mortality.

There is approximately 8-13% increased risk with every 1 mg/dL increase for CVDs, ischemic stroke, CHF and HTN.

Uric acid is a pro-oxidant that can increase oxygen free radicals.
- Promote lipid oxidation which can lead to:
 - Vascular endothelial dysfunction.
 - Inflammation
 - NO production impairment.
 - Atherosclerosis
 - Thrombogenesis

Hypertension - 2003
Fructose

Sugars (particularly sucrose and fructose) tend to increase serum triacylglycerol concentrations by 60%.

AJCN – 10/2003

Uric acid elevations can occur with high fructose intake.

AAFP – 2/1999
- Elevated uric acid levels have been associated with increased cardiovascular events.
Copper Deficiency

Hypercholesterolemia

Hypertension

Case Study #1

62 year old male

CC: Hypercholesterolemia and Muscle cramps

Medications: Exforge, Catapress and Aspirin

SpectraCell results:
- Deficiencies: B2, B12, Pantothenate, Biotin, Choline and Inositol

LPP: Cholesterol: 168, TG: 127, Lp(a): 93.8, CRP: 0.47 and Homocysteine: 16.9
Case Study #2

15 year old female

cc: Asthma, Constipation, Headaches, and PCOS

Medications: Singulair and Albuterol

SpectraCell: (1/2010)
 – Deficiencies: Magnesium and Selenium
 – Spectrox: 61.0%

LPP: Cholesterol: 129, TG: 80, CRP: 0.04, Lp(a): 140.4
Case Study #3

58 year old male

cc: Hypercholesterolemia, hypertriglyceridemia and muscle cramps.

Medications: Lipitor and Levoxyl

SpectraCell: (12/2009)
 – Deficiencies: Cysteine (Calcium and CoQ10)
 – Spectrox: 55.0%

LPP: Cholesterol: 168, TG: 173, CRP: 0.20 and Homocysteine: 12.9 (13.11)