Abstract


Vitamin A deficiency modifies lipid metabolism in rat liver.

Oliveros LB, Domeniconi MA, Vega VA, Gatica LV, Brigada AM, Gimenez MS.

Laboratory of Biological Chemistry, Faculty of Chemistry, Biochemistry and Pharmacy, National University of San Luis, Avenida Ejército de los Andes 954, 5700 San Luis, Argentina.

OBJECTIVE AND METHODS: Liver fatty acid metabolism of male rats fed on a vitamin A-deficient diet for 3 months from 21 d of age was evaluated.

RESULTS: Vitamin A restriction produced subclinical plasma and negligible liver retinol concentrations, compared with the control group receiving the same diet with 4000 IU vitamin A (8 mg retinol as retinyl palmitate)/kg diet. Vitamin A deficiency induced a hypolipidaemic effect by decreasing serum triacylglycerol, cholesterol and HDL-cholesterol levels. The decrease of liver total phospholipid was associated with low phosphatidylcholine synthesis observed by lower [14C]choline incorporation into phosphatidylcholine, compared with control. Also, liver fatty acid synthesis decreased, as was indicated by activity and mRNA expression of acetyl-CoA carboxylase (ACC), and incorporation of [14C]acetate into saponified lipids. A decrease of the PPARalpha mRNA expression was observed. Liver mitochondria of vitamin A-deficient rats showed a lower total phospholipid concentration coinciding with a decrease of the cardiolipin proportion, without changes in the other phospholipid fractions determined. The mitochondria fatty acid oxidation increased by 30 % of the control value and it was attributed to a high activity and mRNA expression of carnitine palmitoyltransferase-I (CPT-I). An increase in serum beta-hydroxybutyrate levels was observed in vitamin A-deficient rats.

CONCLUSION: Vitamin A deficiency alters the mitochondria lipid composition and also enhances fatty acid oxidation by modifying the production of malonyl-CoA, the endogenous inhibitor of CPT-I, due to decreased activity of liver ACC. The incorporation of vitamin A into the diet of vitamin A-deficient rats reverted all the changes observed.

PMID: 17298694