Severe diabetes, age-dependent loss of adipose tissue, and mild growth deficiency in mice lacking Akt2/PKB beta.

Garofalo RS, Orena SJ, Rafidi K, Torchia AJ, Stock JL, Hildebrandt AL, Coskran T, Black SC, Brees DJ, Wicks JR, McNeish JD, Coleman KG.

Pfizer Global Research and Development, Groton, Connecticut 06357, USA.

BACKGROUND: The serine/threonine kinase Akt/PKB plays key roles in the regulation of cell growth, survival, and metabolism. It remains unclear, however, whether the functions of individual Akt/PKB isoforms are distinct.

OBJECTIVE AND METHODS: To investigate the function of Akt2/PKBbeta, mice lacking this isoform were generated.

RESULTS: Both male and female Akt2/PKBbeta-null mice exhibit mild growth deficiency and an age-dependent loss of adipose tissue or lipoatrophy, with all observed adipose depots dramatically reduced by 22 weeks of age. Akt2/PKBbeta-deficient mice are insulin resistant with elevated plasma triglycerides. In addition, Akt2/PKBbeta-deficient mice exhibit fed and fasting hyperglycemia, hyperinsulinemia, glucose intolerance, and impaired muscle glucose uptake. In males, insulin resistance progresses to a severe form of diabetes accompanied by pancreatic beta cell failure. In contrast, female Akt2/PKBbeta-deficient mice remain mildly hyperglycemic and hyperinsulinemic until at least one year of age.

CONCLUSION: Thus, Akt2/PKBbeta-deficient mice exhibit growth deficiency similar to that reported previously for mice lacking Akt1/PKBalpha, indicating that both Akt2/PKBbeta and Akt1/PKBalpha participate in the regulation of growth. The marked hyperglycemia and loss of pancreatic beta cells and adipose tissue in Akt2/PKBbeta-deficient mice suggest that Akt2/PKBbeta plays critical roles in glucose metabolism and the development or maintenance of proper adipose tissue and islet mass for which other Akt/PKB isoforms are unable to fully compensate.

PMID: 12843127

FREE FULL TEXT