Abstract


Vitamin A levels and immunity in humans.

Jason J, Archibald LK, Nwanyanwu OC, Sowell AL, Buchanan I, Larned J, Bell M, Kazembe PN, Dobbie H, Jarvis WR.

HIV Immunology and Diagnostics Branch, Division of AIDS, STD, and TB Laboratory Research, National Center for Infectious Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia 30333, USA.

BACKGROUND: In animal studies, vitamin A deficiency induces a shift from type 2 (humoral) to type 1 (cellular) cytokines; there are no similar data for humans. Control of human immunodeficiency virus (HIV) and Mycobacterium tuberculosis infections requires type 1 cytokine (cellular) immunity. These infections and vitamin A deficiency are highly prevalent in Africa.

OBJECTIVE AND METHODS: We therefore examined the interactions among serum vitamin A levels, immune parameters, HIV infection status, Mycobacterium bovis BCG vaccine scarring (as an indicator of a type 1 cytokine profile), and clinical findings for 70 hospitalized children in Malawi, Africa. Directly conjugated monoclonal antibodies and flow cytometry were used to assess cell-specific cytokine production by peripheral blood monocytes and lymphocyte subpopulations. The statistical techniques employed included nonparametric statistics and logistic regression analyses.

RESULTS: Thirty percent of the participants had severe vitamin A deficiency (<10 microg/dl), 34% had moderate deficiency (10 to <20 microg/dl), and 36% had normal levels (> or = 20 microg/dl). Vitamin A levels were lower for HIV-positive than for HIV-negative children (median, 10 and 17 microg/dl, respectively). Vitamin A-deficient children (<20 microg/dl) were more likely than non-vitamin A-deficient children to have higher proportions of natural killer (NK) cells (median, 8.3 and 5.2%, respectively) and lower ratios of interleukin-10-producing monocytes to tumor necrosis factor alpha-producing monocytes after induction (median, 1.0 and 2.3, respectively). Vitamin A-deficient children were also more likely than non-vitamin A-deficient children to exhibit respiratory symptoms (47% versus 12%) and visible BCG vaccine scars (83% versus 48%), which are indicative of a type 1 response to vaccination. Vitamin A status did not vary with gender, age, incidence of malaria parasitemia, blood culture positivity, or rates of mortality (6% of vitamin A-deficient children died versus 20% of non-vitamin A-deficient children).

CONCLUSION: Lower vitamin A levels were associated with a relative type 1 cytokine dominance and proportionately more NK cells, both of which may be somewhat beneficial to persons who are exposed to HIV, M. tuberculosis, or other type 1 pathogens.

PMID: 11986269

FREE FULL TEXT