Carnitine Transports fatty acids into mitochondria; Decreases both mental and physical fatigue in clinical trials.15,31,32

B Vitamins Necessary for converting food into energy; Cofactors in the mitochondrial respiratory chain include B1, B2, B3, B5, B6, B12 and Folate.8,15,16,26-30

Vitamin D Low levels are seen in patients with chronic fatigue syndrome; Deficiency causes reduced muscle strength.24,25

Vitamin E Inverse correlation exists between fatigue and vitamin E levels.23

Vitamin A When cellular levels of vitamin A are low, mitochondrial respiration and ATP production decreases.22

Vitamin C Assists iron uptake and transport; Precursor to carnitine and several hormones that affect energy levels. Supplementation reduced fatigue in various trials.15,16,21

Antioxidants Several studies confirm that oxidative stress exacerbates clinical symptoms of fatigue. Mitochondrial dysfunction (inefficient energy metabolism) can be treated therapeutically with antioxidants such as Selenium, Cysteine, α-Lipoic acid and Glutathione, of which unusually low levels are seen in chronic fatigue patients.12,16,18,19,20

Chromium Promotes glucose uptake into cells, helping stabilize blood sugar.16,33

Zinc Deficiency lowers immunity and may cause muscle fatigue; Involved in several reactions for energy metabolism.15,34,35

Asparagine Supplementation of this amino acid delayed fatigue during exercise by decreasing the rate at which glycogen was used up; needed for gluconeogenesis, a process that allows glucose to be made from protein to prevent blood sugar from getting too low.12,3

Biotin Helps liver utilize glycogen for energy. Animal studies confirm that biotin deficiency causes clinical fatigue.9

Glutamine Mental and physical fatigue coincides with reduced levels of this amino acid in various tissues. Supplementation makes muscle more sensitive to insulin, increasing energy levels.5,6,7

Serine Counteracts the overproduction of fatigue-causing stress hormones.8,9

CoQ10 Deficiency causes fatigue due to its role in mitochondrial energy metabolism; therapeutic benefits particularly noticeable in chronic fatigue syndrome.10,11,12,15

Fructose Intolerance Fatigue (and hypoglycemia) are classic symptoms of this condition, since it depletes the main form of cellular energy, ATP.13,14

Magnesium Required to store energy molecule ATP; Repletion of magnesium in chronic fatigue patients shows clinical improvement in energy levels.15,16,17

Copyright 2012 SpectraCell Laboratories, Inc. All rights reserved. Doc 376 08.12
REFERENCES

22Acin-Perez R, Hoyos B et al. Control of oxidative phosphorylation by vitamin A illuminates a fundamental role in mitochondrial energy homeostasis. FACSEB J 2010;24:627-636.

27Shimizu T, Hoshino H et al. Anti-fatigue effect of dicethiamine hydrochloride is likely associated with excellent absorbability and high transformability in tissues as a Vitamin B(1). Eur J Pharmacol 2010;635:117-123.

34Maes M, Mihaylova I et al. In chronic fatigue syndrome, the decreased levels of omega-3 poly-unsaturated fatty acids are related to lowered serum zinc and defects in T cell activation. Neuro Endocrinol Lett 2005;26:745-751.

For more references, go to http://www.spectracell.com/online-library-mnt-fatigue-abstracts/