Ubiquinol-induced gene expression signatures are translated into altered parameters of erythropoiesis and reduced low density lipoprotein cholesterol levels in humans.

Schmelzer C, Niklowitz P, Okun JG, Haas D, Menke T, Döring F.

Department of Molecular Prevention, Institute of Human Nutrition and Food Science, Christian-Albrechts-University of Kiel, Heinrich-Hecht-Platz 10, Kiel, Germany.

OBJECTIVE AND METHODS: Studies in vitro and in mice indicate a role for Coenzyme Q(10) (CoQ(10)) in gene expression. To determine this function in relationship to physiological readouts, a 2-week supplementation study with the reduced form of CoQ(10) (ubiquinol, Q(10) H(2)), 150 mg/d was performed in 53 healthy males.

RESULTS: Mean CoQ(10) plasma levels increased 4.8-fold after supplementation. Transcriptomic and bioinformatic approaches identified a gene-gene interaction network in CD14-positive monocytes, which functions in inflammation, cell differentiation, and peroxisome proliferator-activated receptor-signaling. These Q(10) H(2) -induced gene expression signatures were also described previously in liver tissues of SAMP1 mice. Biochemical and NMR-based analyses showed a reduction of low density lipoprotein (LDL) cholesterol plasma levels after Q(10) H(2) supplementation. This effect was especially pronounced in atherogenic small dense LDL particles (19-21 nm, 1.045 g/L). In agreement with gene expression signatures, Q(10) H(2) reduces the number of erythrocytes but increases the concentration of reticulocytes.

CONCLUSIONS: In conclusion, Q(10) H(2) induces characteristic gene expression patterns, which are translated into reduced LDL cholesterol levels and altered parameters of erythropoiesis in humans.

PMID: 21280176