Docosahexaenoic acid induces an anti-inflammatory profile in lipopolysaccharide-stimulated human THP-1 macrophages more effectively than eicosapentaenoic acid.

Weldon SM, Mullen AC, Loscher CE, Hurley LA, Roche HM.

Nutrigenomics Research Group, Department of Clinical Medicine, Institute of Molecular Medicine, Trinity Center for Health Sciences, St. James's Hospital, Dublin 8, Ireland.

OBJECTIVE: A number of studies have investigated the effects of fish oil on the production of pro-inflammatory cytokines using peripheral blood mononuclear cell models. The majority of these studies have employed heterogeneous blends of long-chain n-3 polyunsaturated fatty acids (PUFA), eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA), which preclude examination of the individual effects of LC n-3 PUFA.

METHODS: This study investigated the differential effects of pure EPA and DHA on cytokine expression and nuclear factor kappaB (NF-kappaB) activation in human THP-1 monocyte-derived macrophages.

RESULTS: Pretreatment with 100 microM EPA and DHA significantly decreased lipopolysaccharide (LPS)-stimulated THP-1 macrophage tumor necrosis factor (TNF) alpha, interleukin (IL) 1beta and IL-6 production (P<.02), compared to control cells. Both EPA and DHA reduced TNF-alpha, IL-1beta and IL-6 mRNA expression. In all cases, the effect of DHA was significantly more potent than that of EPA (P<.01). Furthermore, a low dose (25 microM) of DHA had a greater inhibitory effect than that of EPA on macrophage IL-1beta (P<.01 and P<.04, respectively) and IL-6 (P<.003 and P<.003, respectively) production following 0.01 and 0.1 microg/ml LPS stimulation. Both EPA and DHA down-regulated LPS-induced NF-kappaB/DNA binding in THP-1 macrophages by approximately 13% (P< or = .03). DHA significantly decreased macrophage nuclear p65 expression (P< or = .05) and increased cytoplasmic IkappaBalpha expression (P< or = .05). Although similar trends were observed with EPA, they were not significant.

CONCLUSIONS: Our findings suggest that DHA may be more effective than EPA in alleviating LPS-induced pro-inflammatory cytokine production in macrophages - an effect that may be partly mediated by NF-kappaB. Further work is required to elucidate additional divergent mechanisms to account for apparent differences between EPA and DHA.

PMID: 16781858