Abstract

Neuroprotectin D1 inhibits retinal ganglion cell death following axotomy.

Qin Q, Patil KA, Gronert K, Sharma SC.

Department of Cell Biology and Anatomy and Ophthalmology, New York Medical College, Valhalla, NY 10595, USA.

OBJECTIVE AND METHODS: Neuroprotectin D1 (NPD1), a docosahexaenoic acid-derived autacoid, is an endogenous neuroprotective and anti-inflammatory mediator that is generated in the retina and brain. The effects of exogenous NPD1 on retinal ganglion cell (RGC) apoptosis and the role of 12/15-lipoxygenase (Alox15) in retina were evaluated after optic nerve transection (ONT).

RESULTS: Treatment with NPD1 was associated with significant protection against RGC death. The percentage of RGC survival in NPD1-treated group was 30% at 2 weeks after ONT as compared with 12% of RGC survival in the ONT group without treatment. Endogenous NPD1 was a predominant lipid autocoid in uninjured and axotomized retinas. Alox15 mRNA expression was upregulated in retinas following ONT suggesting that amplification of 12/15-lipoxygenase (12/15-LOX) may represent a neuroprotective response in the rat retina. The density of RGCs was higher in the normal retina of 12/15-LOX-deficient mice as compared with congenic controls.

CONCLUSION: Hence, the resident NPD1 has a potential role in the physiological and pathophysiological responses of the retina.

PMID: 19019647