Lymphocyte and Plasma Vitamin C Levels in Type 2 Diabetic Patients With and Without Diabetes Complications

HIROSHI YAMADA, MD
KAORU YAMADA, MD
MASAKO WAKI, MD
KEIZO UMEGAKI, PHD

Diabetes has been considered to be associated with oxidative stress. It has been suggested that increased free radicals and decline of antioxidant defense mechanisms induce diabetic micro- and macrovascular complications (1–3). Vitamin C is one of the major antioxidants and is detected in various blood components (4). However, measurements of vitamin C levels have shown inconsistent results, and the interpretation of vitamin C levels in diabetes as an antioxidant biomarker has not been clarified (5–8). In this study, we investigated the lymphocyte and plasma vitamin C levels in type 2 diabetic patients with and without diabetes complications.

RESEARCH DESIGN AND METHODS — Forty-one patients with type 2 diabetes (63 ± 8.9 years [mean ± SD]; 25 men and 16 women) attending the Department of Endocrinology and Metabolism at Shizuoka City Hospital were recruited. Type 2 diabetes was diagnosed according to the American Diabetes Association criteria. The duration of illness was 11 ± 8.3 years, fasting plasma glucose was 137 ± 43 mg/dl, and HbA1c levels were 7.1 ± 1.0%. Twenty-six patients had diabetes complications with neuropathy, retinopathy, or nephropathy, and 15 patients had no complications. Both diabetic groups were matched by age, sex, fasting plasma glucose, and HbA1c level (63 ± 9.7 years, 18 men and 8 women, 137 ± 45 mg/dl, and 7.2 ± 1.0% for diabetic patients with complications compared with 64 ± 7.5 years, 7 men and 8 women, 137 ± 42 mg/dl, and 6.8 ± 0.8% for diabetic patients without complications, respectively). The duration of illness was longer in the diabetic patients with complications than in diabetic patients without complications (13 ± 9.1 vs. 7.7 ± 5.2 years, respectively, \(P = 0.051\)).

The vitamin C samples were stored at −80°C until analyzed, and the vitamin C level was not different (59 ± 19 vs. 53 ± 18 \(\mu\)mol/l, \(P = 0.17\)) (Fig. 1A and B). There were no significant linear correlations between the lymphocyte and plasma vitamin C levels in diabetic patients \((r = 0.11, P = 0.95)\) as well as in control subjects \((r = 0.14, P = 0.35)\). The lymphocyte vitamin C level in diabetic patients with complications was significantly lower than in those without complications \((17 ± 3.3 vs. 21 ± 5.4 \mu\)mol/\(mg\) protein, \(P = 0.011)\) (Fig. 1C), whereas the plasma vitamin C level was not different \((59 ± 18 vs. 59 ± 21 \mu\)mol/l, \(P = 0.97)\).

CONCLUSIONS — Increased oxidative stress in diabetes could contribute to depletion of antioxidants such as vitamin C (2,3). In this report, we demonstrated that the lymphocyte vitamin C level is significantly lower in type 2 diabetic patients, but we could not observe such an association in plasma vitamin C levels. The plasma concentration of vitamin C is considered to be strongly correlated with transient consumption of foods such as fruit, supplements, and vegetables (4).

From the 1General Clinical Research Center, Hamamatsu University School of Medicine, Hamamatsu, Japan; the 2Department of Health and Preventive Care Center, Shizuoka City Hospital, Shizuoka, Japan; the 3Department of Endocrinology and Metabolism, Shizuoka City Hospital, Shizuoka, Japan; and the 4National Institute of Health and Nutrition, Toyama, Shinjuku-ku, Tokyo, Japan.

Address correspondence and reprint requests to Dr. Hiroshi Yamada, MD, Hamamatsu University School of Medicine, General Clinical Research Center, 1-20-1 Handayama, Hamamatsu 431-3192, Japan. E-mail: hyamada@hama-med.ac.jp.

Received for publication 4 June 2004 and accepted in revised form 28 June 2004.

A table elsewhere in this issue shows conventional and Système International (SI) units and conversion factors for many substances.

© 2004 by the American Diabetes Association.
Lymphocyte vitamin C in type 2 diabetes

Figure 1—Lymphocyte and plasma vitamin C levels in type 2 diabetic patients (n = 41) and control subjects (n = 50). A: Lymphocyte vitamin C level in diabetic patients was significantly lower than that in the control subjects (**P < 0.0001). B: Plasma vitamin C level in diabetic patients was not different from that in the control subjects (P = 0.17). C: Lymphocyte vitamin C level in diabetic patients with complications (n = 26) was significantly lower than that in those without complications (n = 15) (*P = 0.011). The horizontal bars represent the mean ± SD.

Compared with plasma, lymphocyte has been reported to maintain a vitamin C concentration as large as 80- to 100-fold across the plasma membrane (12,13) and to have cell-membrane transporting mechanisms between vitamin C and glucose (14,15). In diabetes, therefore, the measurement of lymphocyte vitamin C might be expected to be a more reliable antioxidant biomarker than plasma vitamin C level.

It is unclear whether leukocyte vitamin C correlates with diabetes complications. VanderJagt et al. (5) reported that vitamin C levels in mononuclear leukocytes were decreased in the whole group of type 1 diabetic patients compared with control subjects but were not different between patients with and without long-term complications. We showed the significant lower lymphocyte vitamin C levels in patients with type 2 diabetes with complications compared with those without complications. However, the results should be interpreted carefully because of the small sample size and because the differences of lymphocyte vitamin C level among different diabetes complications are not fully clarified. Further studies are required to investigate the precise correlations of lymphocyte vitamin C with duration or severity of diabetes and to establish the clinical usefulness of lymphocyte vitamin C level as a biomarker in developing diabetes complications.

Acknowledgments—This study was supported by a grant from Japanese Ministry of Health, Labour and Welfare.

We thank Reiko Akiyama for her skillful assistance.

References